Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis.
نویسندگان
چکیده
Calcific aortic valve disease (CAVD) is a progressive pathology characterized by calcification mainly within the cusps of the aortic valve (AV). As CAVD advances, the blood flow and associated hemodynamics are severely altered, thus influencing the mechanical performance of the AV. This study proposes a new method, termed reverse calcification technique (RCT) capable of re-creating the different calcification growth stages. The RCT is based on three-dimensional (3D) spatial computed tomography (CT) distributions of the calcification density from patient-specific scans. By repeatedly subtracting the calcification voxels with the lowest Hounsfield unit (HU), only high calcification density volume is presented. RCT posits that this volume re-creation represents earlier calcification stages and may help identify CAVD initiation sites. The technique has been applied to scans from 12 patients (36 cusps) with severe aortic stenosis who underwent CT before transcatheter aortic valve implantation (TAVI). Four typical calcification geometries and growth patterns were identified. Finite elements (FE) analysis was applied to compare healthy AV structural response with two selected CAVD-RCT configurations. The orifice area decreased from 2.9cm(2) for the healthy valve to 1.4cm(2) for the moderate stenosis case. Local maximum strain magnitude of 0.24 was found on the edges of the calcification compared to 0.17 in the healthy AV, suggesting a direct relation between strain concentration and calcification geometries. The RCT may help predict CAVD progression in patients at early stages of the disease. The RCT allows a realistic FE mechanical simulation and performance of calcified AVs.
منابع مشابه
Biomechanical factors in the biology of aortic wall and aortic valve diseases
The biomechanical factors that result from the haemodynamic load on the cardiovascular system are a common denominator of several vascular pathologies. Thickening and calcification of the aortic valve will lead to reduced opening and the development of left ventricular outflow obstruction, referred to as aortic valve stenosis. The most common pathology of the aorta is the formation of an aneury...
متن کاملThree dimensional volume quantification of aortic valve calcification using multislice computed tomography.
OBJECTIVE To assess a new multislice computed tomography (CT) technique for three dimensional quantification of aortic valve calcification volume (3D AVCV) and to study the relation between stenosis and calcification of the aortic valve. METHODS 50 patients with echocardiographic calcification of the aortic valve underwent two separate ECG triggered multislice CT for quantification of 3D AVCV...
متن کاملCARDIOVASCULAR MEDICINE Three dimensional volume quantification of aortic valve calcification using multislice computed tomography
Objective: To assess a new multislice computed tomography (CT) technique for three dimensional quantification of aortic valve calcification volume (3D AVCV) and to study the relation between stenosis and calcification of the aortic valve. Methods: 50 patients with echocardiographic calcification of the aortic valve underwent two separate ECG triggered multislice CT for quantification of 3D AVCV...
متن کاملCorrection: The Long Non-Coding HOTAIR Is Modulated by Cyclic Stretch and WNT/β-CATENIN in Human Aortic Valve Cells and Is a Novel Repressor of Calcification Genes
Aortic valve calcification is a significant and serious clinical problem for which there are no effective medical treatments. Individuals born with bicuspid aortic valves, 1-2% of the population, are at the highest risk of developing aortic valve calcification. Aortic valve calcification involves increased expression of calcification and inflammatory genes. Bicuspid aortic valve leaflets experi...
متن کاملAutomatic measurement of aortic annulus diameter in 3-dimensional Transoesophageal echocardiography
BACKGROUND Transcatheter aortic valve implantation involves percutaneously implanting a biomechanical aortic valve to treat severe aortic stenosis. In order to select a proper device, precise sizing of the aortic valve annulus must be completed. METHODS In this paper, we describe a fully automatic segmentation method to measure the aortic annulus diameter in patients with aortic calcification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2015